

DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

- 1ST - 3RD FEBRUARY 2023

Saving The Indian Ocean: Plastic Pollution Assessment and Monitoring Along the Tana River

Kennedy Wangari | @kennedykwangari UNEP | Deeplearning.Al 02/02/2023

KABARAK UNIVERSITY Education in Biblical Perspective

Moral Code As members of Kabarak University family, we purpose at all times and in all places, to set apart in one's heart, Jesus Christ as Lord. (1 Peter 3:15)

By 2050, the Indian Ocean might have more marine plastic waste than fish

4 million tons of plastic waste drain in the Indian Ocean every year

80% of the debris flows through the Tana River.

Poses threat to the marine environment, food safety, human health, eco-tourism, & climate change.

Plastic pellets inside a dead fish washed ashore on a beach

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Problem

Detecting, tracking & measuring how the plastic waste leaks into the Indian Ocean remains a tough challenge

How do we identify hotspots for targeted cleanups?

Manta Trawls are inefficient, expensive & labor intensive

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by Artificial Intelligence Google TensorFlow

Preserve the beauty, health, & biodiversity of the Indian Ocean &

Waterways

- 1. Develop real-time detection of different types of plastic trash in the Tana River and beyond
- 2. Create a public dataset of annotated marine plastic debris images.
- 3. Investigate the usefulness of the state of the art deep-learning architectures to quantify buoyant aquatic plastic litter.

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Related Work

Visioned-equipped Autonomous Underwater Vehicle Deployments (University of Minnesota robotics lab)

LIDAR — Light Detection and Ranging technology

Sonar Image Target Detection & Recognition based on CNN

Submersibles Development (Buoys)

Concept of real-time plastic detection via AUV's equipped with cameras and DeepTrash vision

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Dataset Construction &

Processing

- Drone-mounted cameras captured 9,720 aerial photos & videos
- Scrapped 1,047 images from Google Images
- Community-sourced geospatial data
- Data Annotation with Supervisely tool
- Data Formatting & Augmentation

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

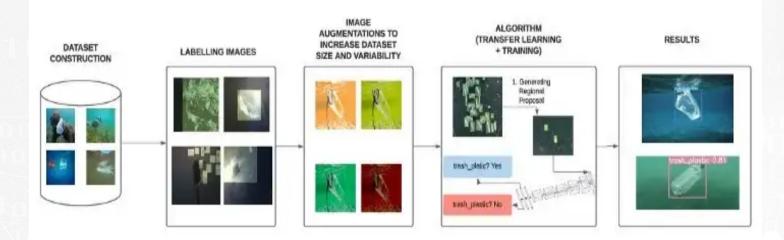
Network Architectures Implemented

Faster RCNN Inception v2

Single Shot Multibox Detector MobileNet v2 Single

YOLOv4-Tiny

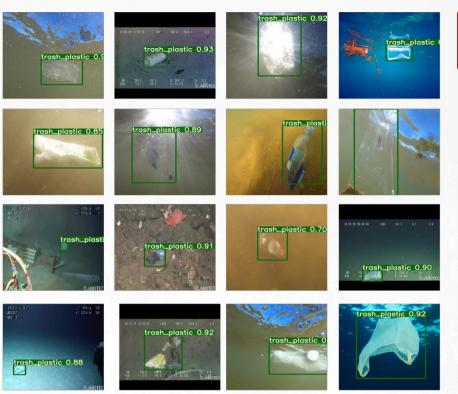
YOLOv5-S



KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Methodology for detecting marine plastic trash

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023



Detection Metrics in mAP, F1 and Precision

Network	mAP	F1- Score	Precision
YOLOv5s	85.0	0.89	0.93
Tiny-YOLOv4	84.0	0.80	0.96
Faster R-CNN	79.0	0.76	0.84
SSD	76.0	0.71	0.83

Performance Metrics for Inference (ms/img)

Network	P100	V100	
YOLOv5s	2.8	1.4	
Tiny-YOLOv4	1.9	1.2	
Faster R-CNN	2.4	1.5	
SSD	2.5	2.1	

Results generated by the model with bounding boxes and confidence scores rendered over marine plastic debris.

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Discussions

YOLOv5-S model is fast, accurate, & robust enough to enable real-time marine plastic debris detection

Effective object detection models can be built using readily available, pre-enabled GPUs for reasonable costs

Implementing data augmentation techniques improved the model's precision rate

Model can be implemented in robotic platforms (AUVs or Buoys)

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Future Directions

Improve our model:

- To detect plastic cells & microplastics in the Tana River, the Indian Ocean & beyond.
- To recognize logos & brands on trash & identify from which companies different types of aquatic trash originate.
- Model inference speeds (GPU technology)

Dataset creation:

Produce synthetic images containing (Use a 2-stage Autoencoder)

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

thank you

Keeping the Tana River clean is the most effective strategy for protecting the Indian Ocean & our waterways.

kennedykwangari@gmail.com | kwangari@unep-wcmc.org

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

