

DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

= 1ST - 3RD FEBRUARY 2023

Model for Sustainable Deployment of Climate Smart Agriculture Practices among Smallholder Farmers in Kakamega County

Simon Ndung'u Moses Thiga, PhD Vitalis Ogema, PhD Philip Wandahwa, Phd

KABARAK UNIVERSITY Education in Biblical Perspective

Moral Code As members of Kabarak University family, we purpose at all times and in all places, to set apart in one's heart, Jesus Christ as Lord. (1 Peter 3:15)

Background

- Kenya is dominated by 4.5 million smallholder farmers who produce over 75% of agricultural production
- CSA interventions have been developed to increase smallholder farmers' resilience to climate change, reduce GHG emissions and increase agricultural productivity.

KABARAKUNIVERSETVERUCATION IN PIPERENCE 2023

Problem

- The current CSA interventions are supply-driven; proposing blanket recommendations for all smallholder farmers in all agro-ecological zones
- Smallholder farmers lack critical climate smart agriculture decision making tools including information on the appropriate interventions and technologies to implement in their farms.

Google

Artificial

Sponsored by

Intelligence

Study / Project Objectives

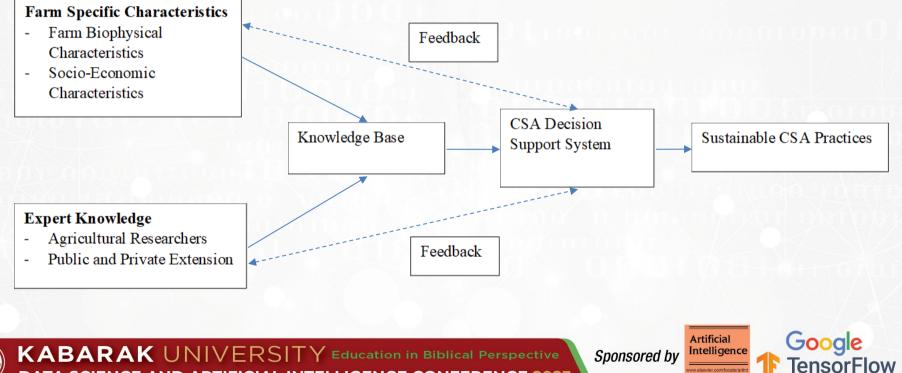
- To develop a suitable Machine Learning model for the deployment and adaptation of CSA practices among smallholder farmers in Kakamega county
- To prototype the Machine Learning model for the deployment and adaptation of CSA practices among smallholder farmers in Kakamega county

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

TensorFlow

Background Literature

There are several Models developed for agriculture:


- 1) Johann et al. (2016) estimated the soil moisture content using an autoregressive error function: this model is suitable to estimate soil moisture in controlled systems that apply no no-till machinery.
- Chen, et al. (2014) designed a Wireless Sensor Network (WSN) to monitor multi-layer soil 2) temperature and moisture in a farmland field to improve water utilization and to collect basic data for research on soil water infiltration variations for intelligent precision irrigation.
- Panchard (2007) developed a DSS aimed at improving resource-poor farmers' farming strategies in 3) the choice of crop varieties, planting and harvesting dates, pests and disease control and efficient use of irrigation water.
- GPFARM, developed by Ascough Li et al. (2002), contains risk analyses that combine projected crop 4) yield and animal production data with concurrent environmental impact data.

proach that gives guidance before anticiputing the planting

KABARAK U

Conceptual Framework

OURNAL

DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Google

Artificial Intelligence

Methodology

- 1) Primary data was collected from 428 smallholder farmers in Kakamega County (182 adopters and 246 dis-adopters). This exercise yielded 610 variables
- 2) Pearson's Correlation coefficient was used to identify the variables that influence smallholder farmers' adoption/disadoption of CSA technologies. This exercise yielded 61 variables
- 3) The Google Collaboratory notebook was used for the model fitting and testing process. Model fitting was done to measure how well the ML models generalize to similar data to that on

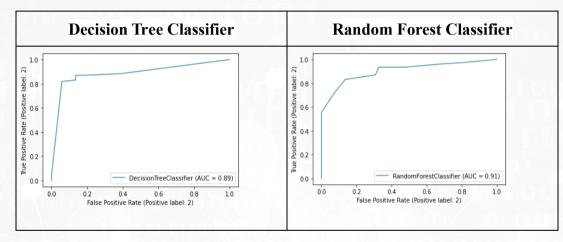
Which they were the regime ducation in Biblical Perspective Sponsored by A Random Forest Mo were ider

Confusion Matrix

Decision Tree Classifier		Random Forest Classifier			
	Adopte r	Dis- adopter		Adopter	Dis-adopter
Adopter	45	7	Adopter	45	7
Dis- adopter	11	66	Dis- adopter	13	64

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by



Google

TensorFlow

Visualization ROC Curves

The models produced AUCs of 0.89 and 0.91 under the Decision Tree Classifier and Random Forest Classifier, respectively

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by

Artificial

Intelligence

JOURNAL

Model Metrics

Metric	Decision Tree	Random Forest		
Training	0.94314381270903	0.996655518394648		
Accuracy	01	8		
Prediction	0.86046511627906	0.844961240310077		
Accuracy	97	5		
Precision /	0.80357142857142	0.775862068965517		
Sensitivity	86	2		
Recall	0.86538461538461	0.865384615384615		
	54	4		
DICABARAK UNIVERS6538461538461- 0.865284 CHESOFFIC				

TensorFlow

OURNAI

Model Classification Report

	Decision Tree Classifier			Random Forest Classifier				
Metric	Precisio	Recall	F1-	Suppor	Precisio	Recal	F1-	Suppor
	n		Score	t	n	TDT	Score	top
Adopt	0.80	0.87	0.83	52	0.78	0.87	0.82	52
Dis- Adopt	0.90	0.86	0.88	77	0.90	0.83	0.86	77
Accuracy		008	0.86	129	Sector 1		0.84	129
macro avg	0.85	0.86	0.86	129	0.84	0.85	0.84	129
M RABA	RARUN		T 9 86 Educati	129 on in Biblical Pe	rspective 5	0.84 ponsored by	Intelligence	

CALCENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

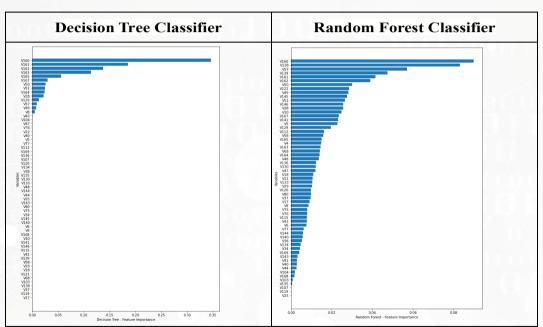
Model Accuracy

Metric	Decision Tree	Random Forest Classifier
MEA	0.1395348837209302	0.155038759689922
	3	48
MSE	0.1395348837209302	0.155038759689922
	3	48
RMSE	0.3735436838188142	0.393749615479078
	KUNIVERSITY Education in Biblical Perspe	2023 Sponsored by Arthecial Google TensorFlow

Identification of important Features Decision Tree

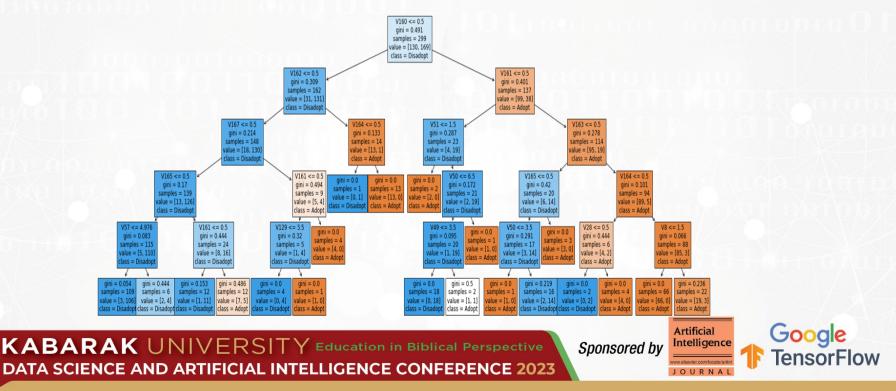
V4, V5 as sifie 10, V38, V39, V40, V41, V42, V43, V44, V45, V46, V49, V50, V51, V58, V59, V103, V107, V112, V114, V115, V116, V117, V119, V120, V129, V136, V138, V139, V140, V141, V143, V144, V145, V146, ∕160. V161. V162. V163.

₩3**99265je/**49, V50, V51, V57, V129, V160, V161, V162, V163, V164, V165, V167

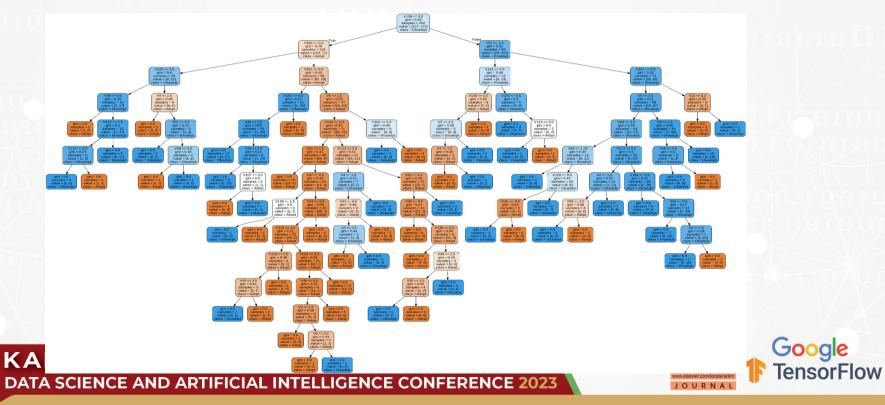

KABARAKUNIVERSITVE at Gation in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by

Visualizing important Features


KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by



Decision Tree Visualization

Random Forest Visualization

Discussion / Implications

- a) The Decision Tree and Random Forest Classifier Models could predict the Smallholder Adoption at 86.05 and 84.50 respectively
- b) The Decision Tree Classifier Model predicted Smallholder CSA adoption using 14 variables while Random Forest Classifier Model used 29 Variables
- c) The important Variables for Decision Tree Classifier Model are V160, V161, V162, V163, V164, V165,

KABARAKUNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

1) The study yielded 610 Variables. Decision Tree

- predicted Smallholder CSA adoption using 14 Variables while Random Forest used 47 Variables
- 2) Implication: If data is collected on the 14 variables, it is therefore possible to predict CSA adoption
- 3) Using ML Algorithms, it is now possible to identify suitable smallholder farmers for CSA adoption
- 4) ML should be mainstreamed in the deployment of CSA practices among smallholder farmers KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Google

Intelligence

Sponsored by

Conclusions

- The challenge of high CSA dis-adoption rates among smallholder farmers in Kakamega County informed this study
- Using the random forest classifier and decision tree, this study identified the most important variables that influence smallholder farmers adoption and dis-adoption of CSA practices.
- With data on the following: CA practice (V160), SWC practice (V161), PPT practice (V162), Composting Practiced (V163), ISLM/ISFM Practiced (V165), Water Harvesting practice (V167), and the Farmer Category (V51) Precision (V57), Agroforestry practiced (V164), Household Monthly income (V129), Farming Experience (V49), Year of CSA Training (V50), Wheelbarrow owned (V28) and Farm Decision Making ability (V8), it is possible to predict smallholder farmers CSA adoption

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Future Work / Directions

- This study tested 2 ML Models: Decision Tree and Random Forest Classifiers; it will be necessary for future studies to test additional models that require less data
- This Study was conducted in Kakamega County, future studies should test the deployment of CSA adoption through larger samples that cover bigger regions

KABARARIEN NERIGITION OF Some Drattice on Ference 2023

THANK YOU!

KABARAK UNIVERSITY Education in Biblical Perspective DATA SCIENCE AND ARTIFICIAL INTELLIGENCE CONFERENCE 2023

Sponsored by

